默瑞生物荣获Celexplorer品牌国内代理权!-默瑞新闻-TwistDx,KAPA,Echelon,默瑞生物,Jackson抗体,Biotechrabbit酶,Enzymatics,二代测序酶,ChromoTek,透析袋

咨询热线:4006-400-850

收藏
当前位置:首页 > 市场动态 > 默瑞新闻
默瑞新闻
默瑞生物荣获Celexplorer品牌国内代理权!
作者:moreybio 发布时间:2019-11-01 点击次数:3041



点击蓝字关注我们

立 冬




立·冬

start of winter





立冬习俗知多少


立冬,二十四节气之一,斗指西北为立冬,太阳黄经为225°,于公历11月7-8日之间交节。立冬是季节类节气,立冬表示冬季自此开始。立冬过后,日照时间将继续缩短,正午太阳高度继续降低。


立 冬


    Celexplorer公司致力于开发最先进的生物图像技术,为研究人员提供在显微镜下呈现高质量、高分辨率的细胞和组织图像。

相  关  产  品

默默奉献 | 瑞来大庆

货号

产品

规格

FC-101

FocusClear™

5 ml

FC-102

FocusClear™

50 ml

FC-103

FocusClear™

500 ml

DC-201

DeepClear™

5 ml

DC-202

DeepClear™

50 ml

MC-301

MountClear™

5 ml

MC-302

MountClear™

50 ml


Celexplore FocusClear™清除夜


  Celexplorer FocusClear™是无毒的、即用型、水溶性清净剂,提高交联剂固定生物样品的透明度,其清除效果能够达到试样表面以下500微米的深度。使用FocusClear™显著提高激光激发和检测颜色和荧光的有效性,获得的显微图像质量将大大提高。用荧光和非荧光染料(包括亲脂染料,如DII、DID和NBD神经酰胺)标记的样品可直接从水、缓冲溶液、酒精、DMSO、DMF和甘油转移到FocusClear™溶液中。

  优势:

  · 增加生物组织透明度的水溶性清洁剂

  · 允许在组织表面以下500μm处看到内部物体

  · 比传统的甘油基固定介质增加至少2倍的视野深度

  · 提高激光激发和彩色或荧光光信号检测的效率

  · 适用于免疫荧光标记的单个细胞和组织、原位杂交、组织或整体免疫组织化学和荧光蛋白样品。


Celexplorer MountClear™固定液

    Celexplorer MountClear™是一种专门为固定FocusClear™清除的样本而设计的固定剂。MountClear™不干扰FocusClear™的清除效果。此外,它还具有抗猝灭、无荧光和快速凝血的特性。

  使用MountClear™以外的固定介质可能会导致样品混浊。MountClear™是一种凝胶,在室温下储存,使用前必须用55°C水浴重新液化30分钟。在4℃下冷却30min,可保持样品的空间位置,延长荧光发射时间,避免显微扫描时的位移。


Celexplorer DeepClear

    是无毒的、即用型、水溶性清净剂,可提高交联剂固定生物样品的透明度,其清除效果能达到试样表面以下500微米的深度。深凹折射率(RI)为1.52,远高于聚焦斜率,将大大改善Z轴的畸变问题。N.A.较高的油物镜能够使用DeepClear™。免疫染色。随着DeepClear™技术的应用,激光激发和彩色荧光检测的效果更加显著,获得的显微图像质量将大大提高。使用免疫染色、荧光和非荧光染料(包括亲脂染料,如DII、DID和NBD神经酰胺)标记的样品可直接从水、缓冲溶液、酒精、DMSO、DMF和甘油转移到FocusClear™溶液中。

  优势:

  · 增加生物组织透明度的水溶性清洁剂

  · 允许在组织表面以下3 mm处看到内部物体

  · 比传统的甘油基固定介质增加至少12倍的视野深度

  · 提高激光激发和彩色或荧光光信号检测的效率

  · 适用于免疫荧光标记的单个细胞和组织、原位杂交、组织或整体免疫组织化学和荧光蛋白样品。


产品应用与论文

默默奉献 | 瑞来大庆

发布论文

  · Richardson, D. S. and J. W. Lichtman (2015). "Clarifying tissue clearing." Cell 162(2): 246-257.

  · Zhu, D., et al. (2013). "Recent progress in tissue optical clearing. 组织光学清除的最新进展" Laser & Photonics Reviews 7(5): 732-757.

  · Genina, E. A., et al. (2010). "Tissue optical immersion clearing." Expert Rev. Med. Devices 7(6): 825-842.

应用:鼠 Mouse

  · Song, E., et al. (2015). "Optical clearing based cellular-level 3D visualization of intact lymph node cortex." Biomedical optics express 6(10): 4154-4164.

  · Song, E., et al. (2015). "Optical clearing assisted confocal microscopy of ex vivo transgenic mouse skin." Optics & Laser Technology 73: 69-76.

  · Moy, A. J., et al. (2015). "Optical properties of mouse brain tissue after optical clearing with FocusClear™." Journal of biomedical optics 20(9): 095010-095010.

  · Van Amerongen, R. (2015). "Lineage Tracing in the Mammary Gland Using Cre/lox Technology and Fluorescent Reporter Alleles." Mammary Stem Cells: Methods and Protocols: 187-211.

  · Miyawaki, A. (2015). "Brain clearing for connectomics." Microscopy 64(1): 5-8.

  · Li, J., et al. (2015). "Fast immuno-labeling by electrophoretically driven infiltration for intact tissue imaging." Scientific reports 5.

  · Juang, J.-H., et al. (2015). "3-D Imaging Reveals Participation of Donor Islet Schwann Cells and Pericytes in Islet Transplantation and Graft Neurovascular Regeneration." EBioMedicine 2(2): 109-119.

  · Deisseroth, K., et al. (2015). "Optimization of CLARITY for Clearing Whole-Brain and Other Intact Organs."

  · Costantini, I., et al. (2015). "A versatile clearing agent for multi-modal brain imaging." Scientific reports 5.

  · Moy, A. J., et al. (2014). "High-resolution visualization of mouse cardiac microvasculature using optical histology." Biomedical optics express 5(1): 69-77.

  · Yang, B., et al. (2014). "Single-cell phenotyping within transparent intact tissue through whole-body clearing." Cell 158(4): 945-958.

  · Walton, K. D. and Å. Kolterud (2014). "Mouse Fetal Whole Intestine Culture System for Ex Vivo Manipulation of Signaling Pathways and Three-dimensional Live Imaging of Villus Development." JoVE (Journal of Visualized Experiments)(91): e51817-e51817.

  · Tomer, R., et al. (2014). "Advanced CLARITY for rapid and high-resolution imaging of intact tissues." Nature protocols 9(7): 1682-1697.

  · Spence, R. D., et al. (2014). "Bringing CLARITY to gray matter atrophy." NeuroImage 101: 625-632.

  · Juang, J.-H., et al. (2014). "Three-dimensional islet graft histology: panoramic imaging of neural plasticity in sympathetic reinnervation of transplanted islets under the kidney capsule." American Journal of Physiology-Endocrinology and Metabolism 306(5): E559-E570.

  · Hsiang, H.-L. L., et al. (2014). "Manipulating a "Cocaine Engram" in Mice." The Journal of Neuroscience 34(42): 14115-14127.

  · Moy, A. J., et al. (2013). "Optical histology: a method to visualize microvasculature in thick tissue sections of mouse brain." PloS one 8(1): e53753.

  · Fu, Y.-Y., et al. (2013). "3-D imaging and illustration of mouse intestinal neurovascular complex." American Journal of Physiology-Gastrointestinal and Liver Physiology 304(1): G1-G11.

  · Sun, X., et al. (2012). "Campylobacter jejuni induces colitis through activation of mammalian target of rapamycin signaling." Gastroenterology 142(1): 86-95. e85.

  · Rosines, E., et al. (2010). "Constructing kidney-like tissues from cells based on programs for organ development: toward a method of in vitro tissue engineering of the kidney." Tissue Engineering Part A 16(8): 2441-2455.

  · Fu, Y.-Y., et al. (2010). "Three-dimensional optical method for integrated visualization of mouse islet microstructure and vascular network with subcellular-level resolution." Journal of biomedical optics 15(4): 046018-046018-046019.

  · Fu, Y. Y., et al. (2009). "Microtome-free 3-dimensional confocal imaging method for visualization of mouse intestine with subcellular-level resolution." Gastroenterology 137(2): 453-465.

 应用:诊断

  · Liu, A. K. L., et al. (2015). "Bringing CLARITY to the human brain: visualisation of Lewy pathology in three‐dimensions." Neuropathology and applied neurobiology.

  · Liu, Y.-A., et al. (2015). "Perivascular interstitial cells of Cajal in human colon." CMGH Cellular and Molecular Gastroenterology and Hepatology 1(1): 102-119.

  · Das, R., et al. (2014). Optically clearing tissue as an initial step for 3D imaging of core biopsies to diagnose pancreatic cancer. SPIE BiOS, International Society for Optics and Photonics.

  · Li, M., et al. (2012). "Surface maturation scoring for oesophageal squamous intraepithelial neoplasia: a novel diagnostic approach inspired by first endomicroscopic 3-dimensional reconstruction." Gut: gutjnl-2011-301946.

 应用:昆虫

  · Wu, C.-L., et al. (2015). "A Single Pair of Neurons Modulates Egg-Laying Decisions in Drosophila." PloS one 10(3).

  · Huang, C.-W., et al. (2015). "Tequila Regulates Insulin-Like Signaling and Extends Life Span in Drosophila melanogaster." The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 70(12): 1461-1469.

  · Hsiao, P.-Y., et al. (2015). "Non-invasive manipulation of Drosophila behavior by two-photon excited red-activatable channelrhodopsin." Biomedical optics express 6(11): 4344-4352.

  · Shih HW, Wu CL, Chang SW, Liu TH, Jason Lai SY, Fu TF, Fu CC & Chiang AS* (2015) Parallel Circuits Control Temperature Preference in Drosophiladuring Aging. Nature Communication DOI: 10.1038/ncomms8775

  · Shih CT, Sporns O, Yuan SL, Su TS, Lin YJ, Chuang CC, Wang TY, Lo CC, Greenspan RJ, Chiang AS* (2015) Connectomics-Based Analysis of Information Flow in the Drosophila Brain. Curr Biol 25, 1249-58. (IF: 9.494)

  · Li, Y., et al. (2015). "The octopamine receptor octß2R is essential for ovulation and fertilization in the fruit fly Drosophila melanogaster." Archives of insect biochemistry and physiology 88(3): 168-178.

  · Shao, H.-C., et al. (2014). "Developing a Stereotypical Drosophila Brain Atlas." Biomedical Engineering, IEEE Transactions on 61(12): 2848-2858.

  · Chihara, T., et al. (2014). "Caspase inhibition in select olfactory neurons restores innate attraction behavior in aged Drosophila."

  · Chin, A. L., et al. (2014). "Diversity and wiring variability of visual local neurons in the Drosophila medulla M6 stratum." Journal of Comparative Neurology 522(17): 3795-3816.

  · Chen, A. Y., et al. (2014). "Walking deficits and centrophobism in an α‐synuclein fly model of Parkinson's disease." Genes, Brain and Behavior 13(8): 812-820.

  · Hess-Homeier DL, Fan CY, Gupta T, Chiang AS, Certel SJ* (2014) Astrocyte-specific regulation of hMeCP2 expression in Drosophila. Biol Open(Posted Online). (New journal)

  · Schoofs A, Hückesfeld S, Schlegel P, Miroschnikow A, Bader R, Zeymer M, Spieß R, Chiang AS, Pankratz MJ* (2014) Selection of motor programs for suppressing food intake and inducing locomotion in the Drosophila brain. PLoS Biol 12, e1001893.(IF: 11.771, 5-Year IF: 12.807)

  · Chin AL, Lin CY, Fu TF, Dickson BJ, Chiang AS* (2014) Diversity and wiring variability of visual local neurons in the Drosophila medulla M6 stratum.J Comp Neurol 522(17): 3795-3816. (IF:3.50)

  · Wu MC, Chu LA, Hsiao PY, Lin YY, Chi CC, Liu TH, Fu CC*, Chiang AS* (2014) Optogenetic control of selective neural activity in multiple freely moving Drosophila adults. Proc Natl Acad Sci USA 111, 5367-5372. (IF: 9.737, 5-Year IF: 10.583)

  · Wu, C.-L., et al. (2013). "An octopamine-mushroom body circuit modulates the formation of anesthesia-resistant memory in Drosophila." Current Biology 23(23): 2346-2354.

  · Lin, C.-Y., et al. (2013). "A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain." Cell reports 3(5): 1739-1753.

  · Lin, H.-H., et al. (2013). "Parallel neural pathways mediate CO2 avoidance responses in Drosophila." Science 340(6138): 1338-1341.

  · Pai, T.-P., et al. (2013). "Drosophila ORB protein in two mushroom body output neurons is necessary for long-term memory formation." Proceedings of the National Academy of Sciences 110(19): 7898-7903.

  · Dubnau, J. and A.-S. Chiang (2013). "Systems memory consolidation in Drosophila." Current opinion in neurobiology 23(1): 84-91.

  · Lehnert, B. P., et al. (2013). "Distinct roles of TRP channels in auditory transduction and amplification in Drosophila." Neuron 77(1): 115-128.

应用:斑马鱼

  · Diekmann, H., et al. (2015). "Characterization of optic nerve regeneration using transgenic zebrafish." Frontiers in cellular neuroscience 9.

  · Diekmann, H., et al. (2015). "Active mechanistic target of rapamycin plays an ancillary rather than essential role in zebrafish CNS axon regeneration." Frontiers in cellular neuroscience 9.

应用:植物

  · Cheng, W. Y., et al. (2003). "The Structure of Tassel in Barren Stalk 1 (ba1) Mutant of Maize." Microscopy and Microanalysis 9(S02): 220-221.

  · Cheng, P.-c., et al. (2003). "Nonlinear Bio-photonic Crystal Effect of Silica Deposition in Plants¡ V." Microscopy and Microanalysis 9(S02): 1354-1355.

  · Lee, B.-h., et al. (2009). "Studies of aberrant phyllotaxy1 mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem." Plant physiology 150(1): 205-216.

应用:生物材料

  Tang, S.-C., et al. (2010). "Vascular labeling of luminescent gold nanorods enables 3-D microscopy of mouse intestinal capillaries." ACS nano 4(10): 6278-6284.

  · Tseng, S.-j., et al. (2009). "Integration of optical clearing and optical sectioning microscopy for three-dimensional imaging of natural biomaterial scaffolds in thin sections." Journal of biomedical optics 14(4)

       默瑞(上海)生物科技有限公司

  服务热线:4006-400-850

  网址:www.moreybio.com

  产品咨询:info@moreybio.com

  仪器售后:service@moreybio.com



版权所有:默瑞(上海)生物科技有限公司   

技术支持:易动力网络